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The solutions of the nonlinear and linearized Navier-Stokes equations are computed 
to investigate the instabilities and the secondary two- and three-dimensional regimes 
in the flow of an incompressible viscous fluid in a thin gap between two concentric 
differentially rotating spheres. The numerical technique is finite difference in the radial 
direction, spectral in the azimuthal direction, and pseudo-spectral in the meridional 
direction. The study follows the experiments by Yavorskaya, Belyaev and co-workers 
in which a variety of steady axisymmetric and three-dimensional travelling wave 
secondary regimes was observed in the case of a thin layer and both boundary 
spheres rotating. In agreement with the experimental results three different types of 
symmetry-breaking primary bifurcations of the basic equilibrium are detected in the 
parameter range under consideration. 

1. Introduction 
The results to be discussed in the present paper concern the behaviour of the flow 

of an incompressible viscous fluid contained between two concentric spheres rotating 
about a common axis with fixed angular velocities. This spherical Couette flow 
(abbreviated frequently as SCF) represents the natural generalization of its simpler 
analogues such as plane and circular Couette flows and the flow between rotating 
disks. The flow is of basic interest for understanding global astrophysical and 
geophysical processes which depend crucially on two factors : rotation and spherical 
geometry. 

An important property of the system under consideration is that it displays two 
types of symmetry. The fluid equations, boundary conditions and thus the basic 
flow are reflection-symmetric with respect to the equatorial plane and symmetric 
with respect to azimuthal translations cp + cp + E(mod2~) (rotationally symmetric). 
These symmetries are responsible for many features of bifurcations of the problem. 
If the basic flow (or another equatorially symmetric steady flow) loses stability 
to an equatorially antisymmetric eigenmode, then the bifurcation is necessarily an 
equatorial symmetry-breaking pitchfork. Furthermore, Ruelle (1973) has pointed 
out that a bifurcation breaking translational symmetry typically leads to travelling 
wave solutions. As will be discussed in the present paper, such consequences of 
symmetry properties manifest themselves in full measure in spherical Couette flow. 

t Present address: Institut fur Stromungsmechanik, Technische Universitat Dresden, 01062 
Dresden, Germany. 
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For brevity, the terms reflection-symmetric and anti-reflection symmetric will always 
denote symmetry with respect to the equator. 

Three dimensionless parameters completely specify the problem - the relative gap 
size 6 = (Rz - RI)/RI, the Reynolds number Rel = RISZl/v and the angular velocity 
ratio o = 5 2 ~ / 0 1  or, alternatively? the second Reynolds number Rez = R2Q2/v, where 
R, and 52, ( i  = 1,2) are the radii and the angular velocities of the boundary spheres, v 
is the kinematic viscosity, and indices 1 and 2 refer to the inner and the outer spheres 
respectively. 

The case of a thin layer 6 = 0.11 and both spheres rotating is considered in 
this paper, with the main purpose being to simulate numerically three-dimensional 
oscillating secondary flows observed in the experiments. Such a gap width is chosen 
because of the wealth of laboratory (Yavorskaya, Belyaev & Monakhov 1977; Ya- 
vorskaya et al. 1980; Wimmer 1981; Nakabayashi 1983; Bartels 1982; Yavorskaya & 
Belyaev 1986) and numerical (Astaf‘eva, Vvedenskaya & Yavorskaya 1978 ; Schrauf 
1986) data obtained with this or nearby values of 6. A brief discussion of the previous 
laboratory and numerical investigations of the flow between rotating spheres appears 
in 91.1. Section 2 reviews the method of calculations. After a presentation of the 
results concerning the linear stability of the basic flow in 93, the numerical simulation 
of nonlinear secondary regimes and transitions among them is described in 94. A 
general discussion is given in the concluding section. 

1.1. Review of previous results 
Numerous experimental and numerical studies have been undertaken in concentric 
spherical annuli since Taylor vortices were discovered in these by Khlebutin (1968). 
It was found that the steady basic flow is axisymmetric and reflection-symmetric and 
consists of differential rotation about the axis and circulation in the meridional plane. 
The basic meridional flow depends on parameters of the problem (Yavorskaya & 
Belyaev 1986) and, generally, takes the form of relatively weak (in the case of a thin 
gap) horizontal vortices, extending from the poles to the equator. 

For the most part the previous experimental and numerical studies of spherical 
Couette flow were devoted to the case of a fixed outer sphere (Re2 = 0). The following 
brief survey is restricted to the results concerning the flow in ‘small-gap’ geometries, 
i.e. those with Taylor vortices developing at the stability limit of the basic flow. The 
upper bound of this region can be defined from the experiments by Khlebutin (1968), 
Wimmer (1977), and Belyaev et al. (1980) as 6 = 0.19. 

By increasing the Reynolds number Rel, Khlebutin (1968), Wimmer (1976), and 
others observed in experiments the first instability of the basic flow as a transition 
to the flow with one pair of Taylor vortices at the equator. This steady secondary 
flow is axisymmetric and reflection-symmetric. The transition back to the basic flow 
occurs if the Reynolds number is reduced. The numerical study by Schrauf (1986) 
has shown that there is a hysteresis in this transition, with its magnitude diminishing 
rapidly with 6. 

Many more flow modes were observed in the supercritical region (Yavorskaya et 
al. 1977; Biihler & Zierep 1984; Yavorskaya & Belyaev 1986; Nakabayashi 1983; 
Nakabayashi & Tsuchida 1988a, b). There are modes with more than one pair 
of Taylor vortices, with wavy or spiral vortices, etc. An intriguing stable steady 
axisymmetric flow with one pair of Taylor vortices which is equatorially asymmetric 
was discovered by Biihler (1990) and thoroughly explored in the recent paper by 
Mamun & Tuckerman (1995). 

Extensive experimental studies of secondary flows and transition to turbulence in 
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the flow with 6 = 0.1096 and both boundary spheres rotating were conducted by 
Yavorskaya et al. (1977, 1980), and Yavorskaya & Belyaev (1986). It was shown 
that the transition to the flow with one pair of Taylor vortices occurs at the stability 
limit of the basic flow only in a restricted range of the outer-sphere angular velocity, 
that is, in the range -920 < Re2 < 1940. Outside this range at 1940 < Re2 < 4290 
the primary bifurcation breaks the rotational symmetry, with the instability resulting 
in the formation of a three-dimensional azimuthally travelling wave flow with spiral 
vortices originating at the equator. At smaller Re2 this flow exists at supercritical 
values of Re1 and can be obtained experimentally by transition from other secondary 
regimes or by fast acceleration of the boundary spheres. Rotation of the boundary 
spheres in opposite directions leads for -3350 < Re2 < -920 to a first instability 
in the form of azimuthally travelling spirals which differ significantly from those 
mentioned above in their spatial structure. It can be assumed that there is a similarity 
between this flow and the spiral vortices observed as a first secondary state in the 
Couette flow between counter-rotating cylinders (Coles 1965; Krueger, Gross & 
DiPrima 1966; Andereck, Liu & Swinney 1986; Langford et al. 1988). At Re2 > 4290 
or Re2 < -3350 transitions to other three-dimensional non-steady secondary flows 
were detected in experiments. 

As far as we know, almost all the previous numerical studies of SCF have been 
restricted to the axisymmetric case. The exceptions were presented by Dumas & 
Leonard (1994) and Dumas (1994). The secondary spiral-vortex flow observed by 
Nakabayashi (1983) in a narrow gap with 6 = 0.06 and Re2 = 0 was simulated 
numerically in the first work. The numerical results discussed in the second paper 
concern the first instability of the basic flow in wide layers with 6 > 0.33 (the so-called 
‘wide-gap instability’), which was observed in experiments by Belyaev, Monakhov & 
Yavorskaya (1978) to result in transition into a three-dimensional secondary flow. 

Nowadays the transitions among the steady axisymmetric secondary flows with 
one and two pairs of Taylor vortices and the basic flow in the layers with 6 < 0.19 
and Re2 = 0 are most clearly understood. As shown by Marcus & Tuckerman (1987) 
and Astaf‘eva (1985~1, b), the basic flow loses stability at Re1 = Re1,(6) to an ax- 
isymmetric, anti-reflection symmetric linear mode. These authors and Schrauf (1986) 
have defined this as a symmetry-breaking pitchfork bifurcation, at which branches 
of unstable equatorially asymmetric solutions bifurcate. The time evolution of the 
solutions results in transition to the secondary flow with one pair of Taylor vortices. 
The transition back to the basic flow at a slightly lower Reynolds number can be 
identified with a turning point of the branch of Taylor vortex flow (Schrauf 1986). A 
careful study of the secondary flow with two pairs of Taylor vortices conducted by 
Marcus & Tuckerman (1987) for the layer with Re2 = 0 and S = 0.18 revealed that 
this flow and the basic one are part of the same equilibrium family. 

The present investigation is believed to be the first extensive study to simulate 
numerically three-dimensional non-steady secondary regimes of SCF in thin layers. 
Attention will be concentrated on the azimuthally travelling wave flows observed in 
the experiments by Yavorskaya et al. (1977, 1980) and Yavorskaya & Belyaev (1986). 
The gap size 6 = 0.11 and the outer sphere angular velocity within the range 
-1300 < Re;! ,< 2500 are chosen for the investigation. 
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2. Equations and method of solution 

We solve the Navier-Stokes equations for incompressible fluid: 

2.1. Governing equations 

au 1 

at  Re 1 
~ + ( U . V ) U  = -VP + -v2u, 

v .u=o,  (2.2) 

where U is the velocity field and P is the pressure. A standard spherical coordinate 
system ( ~ , t l , c p )  with radial, polar and azimuthal directions is used. The no-slip 
boundary conditions at the inner and outer radii are 

U(r = l,tl,cp, t )  = e, sin 8, (2 .3~)  
(2.3h) U(r = 1 + 6,8, cp, t) = e,w(l + 6) sin 8, 

where 

o = Q2/Q1, U = ue, + veg + we,,,, ( U  .V)U = FUe, + Fl'eg + FKe,. 

Finally, regularity conditions at the poles are required. 

and pressure scales respectively. 
In (2.1)-(2.3) the values Rl, l/Q1, RIQl and pR:a? are used as length, time, velocity, 

2.2. Numerical representation 
The numerical method we use is a modification of one developed by Yavorskaya, 
Vvedenskaya & Astaf'eva (1978) and Astaf'eva (1985a, b). Any steady or time- 
periodic flow is found as the limit at t + GO of the solution to the initial-boundary 
value problem consisting of (2.1)-(2.3) and initial condition 

u(r, 8, V7 = b) = uo(r, 8, q)? (2.4) 

where U o  is generally taken to be the flow calculated at nearby values of the 
parameters or, in specific cases, the Stokes solution (2.7). A combined method (spectral 
decomposition in polar and azimuthal directions and finite-difference technique in 
radial direction) is used. 

A solenoidal velocity field in a spherical layer can be represented as a sum of 
toroidal and poloidal terms (see Joseph 1976, App. B6, pp. 233-237) 

u = rot(e,T(r, 8, cp, t ) )  + rot2(e,S(r, 8, cp, t)) (2.5) 

without loss of generality. The expansions of the unknown functions T ,  S, and P are 
constructed in such a way as to satisfy all the boundary and geometry conditions: 
no-slip conditions on the walls, periodicity in the cp-direction and regularity at the 
poles. The first step is to decompose the velocity field into two components 

u = U h  + U S f ,  (2.6) 

where Uh satisfies homogeneous boundary conditions on the spherical walls, while 
US' is the time-independent solenoidal Stokes solution constructed to satisfy the 
actual no-slip conditions. The Stokes solution (Kotschin, Kibel & Rose 1955, 511.22, 
pp. 352-354) 

us' = (o,o, wSt) ,  wSr = (Ar + Br-2) sin tl, (2.7) 
where 

o(1 + S)3 - 1 (1 - w)(l + q3 
(1 + S ) 3  - 1 (1 +6)3 - 1 ' 

A =  , B =  
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is the solution to (2.1)-(2.3) in the Stokes limit Rel,Rez -+ 0. This solution is 
axisymmetric, reflection-symmetric and purely azimuthal in direction. The angular 
velocity of the flow wst/rsin8 is independent of 0. With the toroidal-poloidal 
representation (2.5) the Stokes solution can be rewritten as 

(2.8) 

At small Rel and Re2 the basic flow in thin layers is still mostly azimuthal and 
does not depart greatly from the Stokes flow. In particular, in the parameter range 
considered in the present paper (6 = 0.11,-1300 < Re2 < 2500, and Re1 near the 
critical value Rel, of linear stability of the basic flow) the Stokes term in (2.6) contains 
most of the flow energy. 

The spherical harmonics Ylm(O, cp) = P;l(cos 8)e’”” ( P p  is an associated Legendre 
function) are used to expand the unknown part U h  of the velocity field and the 
pressure P (superscript ‘h‘ is omitted below): 

S S t  = 0, T S f  = (Ar2 + Br-’) cos 0. 

{ T ,  s, q ( r ?  8, $97 t )  = CCGl? ~ l m , h n ) ( r ?  t)ylm(d? cp). (2.9) 
1.m 

The spherical harmonics are chosen since they are periodic in cp, satisfy the regularity 
condition at the poles and are the natural orthogonal basis functions for a spherical 
geometry, in that they are the eigenfunctions of the 8-cp part of the Laplacian. What 
is more, they do not display the ‘pole problem’ which plagues Fourier series and 
finite-difference schemes in polar angle (Orszag 1974). 

The series are truncated so that )mJ < M ,  Jml ,< 1 ,< L. The restriction M = 0 
is applied for axisymmetric solutions. As seen from the experimental results by Ya- 
vorskaya et al. (1977, 1980) and Yavorskaya & Belyaev (1986), all non-axisymmetric 
flows considered here have large azimuthal scale, i.e. the fundamental azimuthal 
wavenumber is something like one or two. Therefore, with the goal of reducing the 
amount of calculation, the value of A4 is no more than M = 6. Note that generally 
we are not imposing the restriction of reflection-symmetry on the @expansion of the 
velocity and pressure fields. This means that we include all terms in (2.9); and not just 
the terms with 1 - m odd in the T-expansion and 1 - m even in the other expansions. 

The substitution of the expansion (2.9) into (2.1) and the application of the operators 

yield the following equations for the complex-valued coefficients TI,, &, and Hlm : 

(2.10b) 
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where 

The new field Qlm is defined to eliminate third- and fourth-order radial derivatives 
from the equations. The boundary conditions are 

7' lm = SI,  = Qlm = 0 at Y = 1, 1 + 6. (2.11) 

Now consider the nonlinear right-hand sides of equations (2.10). It is shown in 
Appendix A that each of them can be expanded in a finite series of spherical 
harmonics : 

2M 2L 

(2.12) 
m=-2M i=lml 

The coefficients for 0 < m < A4 and m < 1 < L are calculated at each time step by 
means of the following procedure. 

The expansion in elrn" is produced by straightforward evaluation of convolution 
sums. The employment of this procedure instead of the fast Fourier transform is 
justified by the small value of M .  A pseudo-spectral technique is applied to the 
polar direction. We compute the velocity field components at the nodes of Gaussian 
quadrature, perform the nonlinear multiplications and transform back to the spectral 
space via Gauss-type integration. In view of (2.12) the appropriate integrals can be 
written in the form 

where p = cos 8 and f l m  stands for f L, f & or fie,. The products P,"P;" are polynomials 
in p of degree not exceeding 3L. Therefore, Gauss integration is performed to machine 
accuracy provided the degree of the Legendre polynomial used for the quadrature is 
greater than or equal to (3L + 1)/2. 

In our calculations the pseudospectral procedure was realized in the following 
manner. First, the coefficients FL, F; and F," of the expansion in e'"'P are computed 
at the quadrature nodes, 

Then the formulas 

(2.13) 

are applied. They can be obtained directly from right-hand sides of (2.10) using the 
relation 



Symmetry-breaking bifurcations in spherical Couette $ow 299 

The calculations are reduced if we employ only the positive (or negative) half of 
quadrature nodes which are the zeros of an even polynomial. In this case, each 
coefficient in the expansion (2.13) should be computed as a sum of parts which are 
even and odd in p. Either one or the other appears in (2.14) depending on the parity 

The uncoupled systems of four differential equations second-order in r ,  first-order 
in t for T[,(r,t),  Slm(r,t), Qlm(r, t ) ,  and HIm(r,t) are solved by a technique explicit- 
implicit in t, finite-difference in r.  In the radial direction the equations are discretized 
by central differences of the second order. The unknowns TI,, SI ,  and Q l ,  are 
computed at the integer discretization points r j  = 1 + j 6 / ( K  + 1) (1 < j 6 K )  and the 
pressure Illrn is calculated at the half-integer points r j - ~ p  = 1 + ( j  - 1/2)S/(K + 1) 
(1 < j < K + 1). Equations (2.10) are approximated at the integer points, and the 
equation 

of PY or aP,yae  . 

is approximated at the half-integer ones. The nonlinear terms are computed at the 
nth time layer and the other terms are computed at the ( n  + 1)th one. The boundary- 
value difference problems are solved by a simple and convenient variant of Gauss 
elimination known as the ‘double sweep method’ (Godunov & Ryabenki 1964, $4.3, 
pp. 14g154). 

When performing most of our numerical simulation of two- and three-dimensional 
flows and transitions among them, we used the following values of discretization 
parameters: M = 6 ( M  = 0 if axisymmetry is imposed); L = 60; K = 10; At = 

n/50=inner sphere rotation period/100. In special cases the changes in the flow 
structure required L, K and At to be changed respectively to 90, 15 and n/lOO. The 
effect of the discretization on the accuracy of calculations is discussed in Appendix 
B, along with the comparison of our results with the known experimental data. 

The following functions are used to display the properties of the calculated axisym- 
metric flows: 

(i) meridional streamfunction Y ( r ,  8, t )  = - sin OdS/d8 such that 

1 ay 
21 =---; 

1 aY u =  ~- 
r2 sin 8 a8 ’ rsin6 d r  

(ii) angular velocity of the flow Q ( r ,  8, t )  = w / r  sin 8; 
(iii) polar spectrum of radial velocity, that is, the absolute value I ul(rj) I as a 

(iv) torques z l ( t )  and rZ(t) exerted by the fluid on the inner and outer spheres 
function of 1, where uI(rj) = 1(1 + 1)r;2S10(rj)r with r j  the mid-gap radius; 

which are calculated by the formula 

Ti(t) = (-1)c-l$3 ’ lzX 1’ sin2 8 (g - :) 1 dOdq 
871 r= Ri 

( i  = 1,2), 
r d r  r=R, 

(2.15) 

where R1 = 1 and R2 = 1 + 6 are the dimensionless radii of boundary spheres. 
If the flow is steady, then z1 and 72 are independent of time and must obey the 

equation 

71 + t2 = 0 (2.16) 

which follows from the time-independence of the fluid angular momentum. These 
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criteria are taken as evidence of completion of transition and establishment of steady- 
state flow after each change of parameters. 

A distinctive property of travelling wave flows is that their integral characteristics 
such as the torques T I  and T ~ ,  the overall angular momentum of the fluid and the energy 
of fluid motion are independent of time. Therefore, after each parameter change we 
can determine the completion of the transitional process and the establishment of the 
new travelling wave flow by the fulfillment of the same criteria as for axisymmetric 
flows. It can be easily shown that (2.15) and (2.16) are suitable for travelling wave 
flows. 

An especially acute problem arising during the numerical simulation of three- 
dimensional flows is the choice of technique for representing the results of calculations. 
Our choice is dictated by the experimental observation that in the parameter range 
considered here three-dimensional flows are exclusively azimuthally travelling wave 
flows with spiral vortices. It seems reasonable to depict vortex boundaries as curves 
21 = 0 in the spherical section at a definite radius. Examples are in figures 11 and 
15. Another possible way, which is to exhibit nieridional velocity fields in sections at 
constant values of cp, is also employed in the present paper (figures 12 and 16). 

With the velocity representation (2.5)-( 2.9) and the well-known orthogonality prop- 
erties of toroidal and poloidal fields (Chandrasekhar 1961, $129, pp. 623-626) and of 
spherical harmonics, the dimensionless energy of the flow can be written 

M 

(2.17) 

where 

hf = l(E + l), a0 = 1, and a, = 2 if m > 0, 

f-m=eveti I-m=odd 

In these formulas E i  (E:J is the overall energy of reflection-symmetric (anti-reflection 
symmetric) velocity components with azimuthal wavenumber rn. In such a manner 
we can construct the energy spectra shown in figures 13 and 17. 

2.3. Eigenvalues and eigenmodes 
The technique applied to calculate the eigenmodes and eigenvalues of axisymmetric 
equilibrium solutions is a slight modification of the initial-value code described 
above. Let U denote the velocity of the equilibrium, whose stability is examined. The 
linearized Navier-Stokes equations for the perturbations u, p are 

au 1 
d t  Re I 
- + (U'V)U + (U*V)U = - v p  + - v*u, (2.18) 

v - u  = 0. (2.19) 
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The boundary and initial conditions are 

U = O  at r = l ,  1+J, (2.20) 

u(r, 8, cp, t = t o )  = uo(r, 6 ,  cp), (2.21) 
where the initial velocity field uo is generally the eigenmode obtained with neighbour- 
ing parameter values. The initial boundary value problem (2.18)-(2.21) is then solved 
in the same manner as the fully nonlinear problem except that the right-hand sides 
of the equations are now the linear functions relative to the unknown variables. The 
values of parameters L and K used are identical to those for the nonlinear prob- 
lem. The coefficients of the equations are independent of cp and reflection-symmetric. 
Therefore, we can consider separately the linear modes with different values of the 
azimuthal wavenumber m and with different equatorial symmetry. This enables a 
reduced series of spherical functions to be used for expanding the perturbations. For 
example, the reflection-symmetric linear mode with wavenumber m can be expanded 
as 

{s, P ) ( T ,  6 ,  q, t )  = x{~lrn, h/rn}(r, t)ylrn(e, CP), 

{T)(r ,  &Cp, t )  = C ' , T l m t ( r ,  t)ylm(6, Cp). 

By evolving (2.18)-(2.19) forward in time, u converges to the eigenmode which is 
preferred (most unstable or least stable) among the eigenmodes with a given m and 
type of equatorial symmetry. The eigenvalue of the preferred mode is determined in 
the following manner. 

The coefficients 

(2.22) 

are calculated after each time step for each 1 = m,. . . , L at every discretization point 
r , .  All the coefficients converge to the eigenvalue A" + io" of the preferred mode as 
t + co. The computations are interrupted when + ip$ and y$ + ia$ for all 1 and j 
coincide to the fourth decimal place. 

In the parameter range under consideration all the preferred non-axisymmetric 
modes were found to be azimuthally travelling waves, with the wave speed W = 
--Orn/m being of the order of the inner-sphere angular velocity. At not-too-small 
rn the large value of oscillation frequency om causes the required time step At to 
be substantially reduced in comparison with that for the axisymmetric mode. This 
complication can be circumvented by going into the rotating frame 

Tln1(r, t )  = e-lmW'L ~,*,(r, t), etc. (2.23) 

where W' is the wave speed of the mode calculated with neighbouring parameter val- 
ues. The equations in unknowns TA, Sk, Q;, and H k  differ from those in TI,, ,Slrn, Qlm 
and Hl, only in the time-derivative term 

(2.24) 

The extra terms imW*Tk, ... are computed at the nth time layer. The new solution 
components { Tk, Sk, El,*,} oscillate with small frequency m( W *  - W ) .  Therefore, 
we can use the same time step At = 7c/100 as for the axisymmetric mode. A similar 
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FIGURE 1. The basic flow with additional vortices and pinches. Re2 = -1200, Re1 = 1597.3 = 
Rel,(Rez). Radius r is mapped linearly from the interval [l, 1 + 61 to [l, 1.41 and only the upper 
hemisphere is plotted. (u)  Streamlines of the meridional flow. The large vortex (solid contours) 
rotates in a counterclockwise direction and the additional small vortex (dashed contour) rotates in 
a clockwise direction. The solid contours are drawn with the values of streamfunction Y equally 
spaced between -1.5 x and the dashed contour is drawn with Y = lo-'. (b)  
Contours of constant angular velocity. The values of Q are equally spaced between -0.6 (outer 
sphere) and 1 (inner sphere). Wiggles near the equator are due to the pinch. 

and -9 x 

expedient is applied when solving the fully nonlinear problem for travelling wave 
flows. 

3. Linear stability of the basic flow 
3.1. Basic flow 

The basic flow consists of a differential rotation about the axis and a meridional 
circulation which is induced by Ekman pumping at the poles and is composed of one 
or two large vortices in each hemisphere. The number of vortices and the direction 
of their circulation are determined by the parameters of the problem. 

Ovseenko (1963) developed an expansion of the solution in powers of Rel. It was 
shown by Munson & Joseph (1971) and verified by our calculations for the case of 
a thin layer that the series converges very slowly and, therefore, can be used only at 
small Reynolds numbers. Only a numerical simulation can give a correct description 
of the structure of the basic flow near the stability limit. 

Our calculations have shown that in most of the parameter range considered here 
the meridional part of the basic flow consists of one large vortex in each hemisphere. 
The vortices rotate in opposite directions in such a way that the flow at the equator 
is always directed from the inner sphere to the outer one. The flow is reflection- 
symmetric. If Re2 is decreased into the region of strong counter-rotation, a basic 
meridional flow of another type appears, that is, an additional vortex develops near 
the pole and the outer sphere in each hemisphere. A typical example of such a flow 
is shown in figure 1. 

The demarcation curve between the two types of basic flow passes in the (Re2,Rel)- 
plane from the origin to the point of intersection with the linear stability curve 
Re1 = Rel,(Rez) at Re2 = -940. Near the origin the curve is an almost straight line 
Rez/Re, = const < 0 (cf. Yavorskaya et al. 1980; Yavorskaya & Belyaev 1986). In 
the region Re2 > -1300 considered here, the additional vortices are very weak and 
far from the equator. Since in the present paper we focus on the formation of Taylor 
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FIGURE 2. Polar spectra of the radial velocity of the pinched basic flows calculated at the stability 
limit. - , Re2 = -1200; - - - - -, Re2 = 0 ;  - - - -, Rez = 2050. The curves are drawn through 
the discrete sets of points; the coefficients u~ are non-zero when I is even. Each spectrum has two 
local maxima, the second one corresponding to the pinch and disappearing when Re1 is decreased. 

and spiral vortices near the equator, these additional vortices are likely to have little 
influence on the phenomena under study. 

Another feature of the flow shown in figure 1 is the pinching of meridional 
streamlines. The pinching was investigated numerically by Bonnet & Alziary de 
Roquefort (19761, Marcus & Tuckerman (1987), and Bar-Yoseph et al. (1990) for the 
case Re2 = 0. It was found by our calculations that the pinches develop in the 
flow at Re1 just less than Relc everywhere over the region -1300 < Re2 < 2500. 
Calculations carried out with different values of the truncation parameter L ( L  = 
20,30,60,90,110) have demonstrated that the minimum value of L that provides an 
adequate reproduction of the basic flow with pinches is L = 60 or L = 90 depending 
on Re*. As an illustration, figure 2 shows the polar spectra of the radial velocity of 
different pinched basic flows. The spectra display two local maxima which are the 
wavenumbers associated with the large basic vortex and the pinch. 

3.2. Linear stability problem 
A search for the most unstable linear mode requires the Computation of stability of 
the basic flow relative to axisymmetric and first nine non-axisymmetric modes. The 
reflection-symmetric and anti-reflection-symmetric modes are considered separately. 
The results have been detailed in Zikanov (1993a, b, 1995). Only a brief discussion 
will be given here. 

Figure 3 shows the critical number Relc of the basic flow stability as a function 
of Re2. The linear stability problem demonstrates the diversity of symme try-breaking 
bifurcations of spherical Couette flow in the range of Re2 under consideration. This 
range can be divided into three parts. 

When -646 < Re2 < 1811, the first instability of the basic flow is to an eigenmode 
that is axisymmetric and anti-reflection-symmetric. In this region the primary bifur- 
cation of the basic flow breaks the equatorial reflection symmetry, with the rotational 
symmetry remaining unchanged. The eigenvalue of the preferred eigenmode is always 
real. As pointed out below, this instability induces a transition to the secondary flow 
with one pair of Taylor vortices. 
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FIGURE 3. - , Critical number Relc of stability of the basic flow as a function of Re2; m, 
the azimuthal wavenumber of the preferred eigenmode; - - - -, experiments with 6 = 0.1096, 
the lower boundary of the region of existence of secondary flows (Yavorskaya et al. 1977, 1980; 
Yavorskaya & Belyaev 1986); + + +, experiments with 6 = 0.111, the critical numbers for 
transition to the flow with one pair of Taylor vortices (Wimmer 1981); *, point of the equatorial 
symmetry-breaking bifurcation of the basic flow calculated by Schrauf (1986) for 6 = 0.115 and 
Re2 = 0. 

At 18 11 < Re2 < 2500 the preferred eigenmodes are also anti-reflection-symmetric. 
In addition, they are non-axisymmetric, that is, the primary bifurcation breaks the 
rotational symmetry as well as the equatorial one. The preferred mode number 
changes consequently from rn = 0 to MZ = 1 and then to rn = 2,3,4,5,6,7. The 
apparent smoothness of this part of the stability curve at the points of change of IIE 

can be explained through figure 4. The slopes of the two intersecting curves ReY(Re2) 
of stability to the modes with neighbouring values of m differ little from one another 
at such points. 

In line with the theoretical results by Ruelle (1973), the non-axisymmetric modes 
are azimuthally travelling waves. The imaginary part of the eigenvalue of the preferred 
eigenmode is always negative. What this means is that the travelling waves propagate 
in the sense of rotation of the inner sphere. It will be shown in $4.2 that this instability 
results in transition to the travelling wave flow with spiral vortices. 

When the boundary spheres rotate in opposite directions and -1300 < Re2 < 
-646, a third type of symmetry-breaking bifurcation appears. Again the preferred 
eigenmodes are azimuthally travelling waves propagating in the sense of rotation 
of the inner sphere. But in this case they are reflection-symmetric. The preferred 
mode number is m = 1 when -1112 < Re2 < -646 and w1 = 2 when Re2 < 
-1112. The nonlinear simulation of secondary flows described in $4.3 gives in this 
region the transition to the flow with rotating spiral vortices which differ in spatial 
structure from those mentioned above. This part of our results can be compared 
with the results obtained for the Couette flow between counter-rotating cylinders. 
Langford et al. (1988) solved the linear stability problem for the cylindrical layer 
with 6 = 0.1325 and found that at Re2 < -1109.97 the basic flow becomes unstable 
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FIGURE 5. ~ , Wave speed of the preferred travelling wave linear modes (in units of the angular 
velocity of the inner sphere); - - - - -, wave speed of preferred modes in counter-rotating cylindrical 
Couette flow with 6 = 0.1325 (Langford et al. 1988). 

to rotating spiral vortices. Their results concerning the wave speed are depicted in 
figure 5 and show a qualitative agreement with our results. 

Figure 5 presents the wave speed W = --Om/m (corn is the imaginary part of 
the eigenvalue) of preferred non-axisymmetric modes. The jumps at Re1 = -1112, 
-646, 1811 are due to the changes of the wavenumber nz from 2 to 1, from 1 to 
0 and from 0 to 1. A striking feature of the plot is that there are no such jumps 
when 1811 < Re2 < 2500, even though m changes from 1 to 2 and then to 3, ..., 7. 



306 0. Yu. Zikanov 

8= 0 H =  0 

R = xi2 

8 = n  0=n 

8=0 8=0 

8 = Ti2 0 = nJ2 

0 = x  8 = n  

FIGURE 6. Preferred non-axisymmetric linear modes. On the left, anti-reflection-symmetric mode 
m = 4 at Rez = 2050; on the right, reflection-symmetric mode m = 2 at Re2 = -1200. Contours 
of zero (top) and equally spaced constant (bottom) polar velocity component v are plotted in the 
spherical section at mid-gap radius projected onto the vertical plane. The vortices near the equator 
contain most of the flow energy. 

It follows from our calculations that in this range the rotating waves are essentially 
dispersionless with respect to the azimuthal wavenumber. The wave speeds of different 
modes coincide for given Re2 and Rel to the third decimal place. 

Plots of non-axisymmetric preferred modes can be seen in figure 6. Three ranges 
of Re2 are distinguished as discussed above, according to the different types of 
symmetry of the eigenvectors. When -646 < Re2 < 1811 and the preferred mode 
is axisymmetric, the vortices are closed and are, in fact, Taylor vortices. A plot 
of this mode can be found, for example. in Marcus & Tuckerman (1987). In the 
other two ranges of Re:! the vortices are open and, in this respect, are similar to the 
spiral vortices detected by our nonlinear calculations (see figures 11 and 15). The 
vortices are inclined to the equatorial plane and move in the azimuthal direction. 
At Re2 < -646 the eigenvectors are reflection-symmetric, whereas at Re2 > -646 
this symmetry is broken and there is flow across the equator, which is forbidden in 
equatorially symmetric flows. The intensity of fluid motion diminishes rapidly from 
the equator to the poles. 

The results of the linear stability analysis are in a good agreement with the 
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experimental observations by Wimmer (1981), Yavorskaya et al. (1977, 1980), and 
Yavorskaya & Belyaev (1986) as shown in figure 3. Three-dimensional secondary 
regimes were not detected at the stability limit in Wimmer’s experiments. All his 
data shown in figure 3 correspond to the first instability of the basic flow resulting 
in the axisymmetric Taylor vortex flow. In contrast, in the experiments performed by 
Yavorskaya, Belyaev and co-workers two three-dimensional flows with spiral vortices 
were observed at the stability limit in the range of Re2 considered here. The dashed 
curve represents the experimentally obtained lower boundary of the existence region 
of secondary flows. One can see that this boundary coincides very closely with the 
linear stability curve. There is one more point of agreement between the results of 
the experiments by Yavorskaya and co-workers and of the linear stability analysis. 
The ranges of primary bifurcation breaking the rotational symmetry are similar : 
Re2 > 1940 and Re2 < -920 for the experiments and Re2 > 1811 and Re2 < -646 
for the present study. It would be useful to compare the calculated wave speed with 
the experimentally obtained one. Unfortunately, the available experimental results on 
the wave speed of the secondary flows considered here are rather poor. We can only 
mention that in experiments, as in our calculations, travelling waves propagate in the 
sense of rotation of the inner sphere. 

4. Secondary regimes and transitions among them 
This section presents the results of nonlinear simulations of experimentally detected 

secondary regimes which are steady axisymmetric flows with one and two vortices 
per hemisphere and two different non-steady three-dimensional flows with spiral 
vortices arising at positive and negative values of Re2. We will refer to these flows 
and to the basic flow as regimes 1, 11, S1, S2, and 0, respectively. The numerical 
code described in 52.2 is applied to investigate the regimes and transitions among 
them. The linear stability of the axisymmetric secondary flows is also examined. 
A representative bifurcation diagram is constructed in each of the three regions 
Re2 < -646, -646 < Re2 < 1811, and Re2 > 1811 determined by the linear stability 
analysis of the basic flow. 

4.1. Slow rotation of the outer sphere; -646 < Re2 < 1811 
This region matches the one -920 < Re2 < 1940 determined experimentally in Ya- 
vorskaya et al. (1977, 1980), and Yavorskaya & Belyaev (1986). The experimentally 
observed structure of secondary flows and transitions among them is represented 
by the well-studied case Re2 = 0. The first instability of the basic flow results in 
transition to the flow with one pair of Taylor vortices (regime I). In the supercritical 
region, the flow with two pairs of Taylor vortices (regime 11) and the travelling wave 
flow with spiral vortices (regime S1 in our notation) can be experimentally obtained 
by fast acceleration of the inner sphere or both boundary spheres. Each of the two 
secondary flows demonstrates a transition to regime I as Rel is decreased through 
the lower boundary of the existence region. Two more steady axisymmetric and 
reflection-symmetric flows with three and four pairs of Taylor vortices are added to 
the set of secondary regimes as Rel is increased further into the supercritical region. 
It was shown in the experiments that all the flows with Taylor vortices are steady 
only in restricted ranges of Re,. At larger Re1 the flows are unstable to azimuthally 
travelling sinusoidal disturbances on the vortices, the instability being very similar to 
that observed in cylindrical Taylor-Couette flow. 

The previous numerical investigations dealt for the most part with axisymmetric 
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FIGURE 7. Bifurcation diagram at Re2 = 0. The torque z2 of different flow regimes is shown as a 
function of Rel. ~ (- - - -) , 1' inearly stable (unstable) solutions; t, 1, transitions which are 
possible under quasi-static change of Rel;  *, point of the smooth transformation of regime 0 to 
regime 11. 0, I, 11, and S1 denote, respectively, the basic flow, the flows with one and two pairs of 
Taylor vortices and the flow with rotating spiral vortices shown in figures 11 and 12. 

regimes. Regimes I and I1 and transitions among them and the basic flow have been 
most clearly understood (Schrauf 1986; Marcus & Tuckerman 1987; Astafeva 1985a, 
b ;  Bar-Yoseph et al. 1990). 

Figure 7 shows the bifurcation diagram constructed as the result of our calculations 
at Re2 = 0. The torque z2 exerted by two- and three-dimensional flows on the outer 
sphere is presented as a function of Rel. A comparison between the computed and 
experimentally observed values of Rel for transitions among different regimes can be 
found in Appendix B. 

When Re1 = Relc = 1262.5, the basic flow equilibrium becomes unstable at an 
equatorial symmetry-breaking subcritical pitchfork bifurcation and a 0 -+ I transition 
occurs, which is asymmetric with respect to reflection about the equator. A compre- 
hensive analysis of this transition in the flow with 6 = 0.18 can be found in the paper 
by Marcus & Tuckerman (1987). At Rel = 1261.2 the curve of regime I has a turning 
point. The transition I + 0 which was also described by Marcus & Tuckerman (1987) 
can be initiated by lowering Re1 to a value less than 1261.2. It breaks neither the 
equatorial nor the rotational symmetry. This result of nonlinear simulations is con- 
firmed by our linear stability analysis of regime I. As Rel approaches the turning 
point, the eigenvalue of the least-stable eigenmode tends to zero, with the mode being 
axisymmetric and reflection-symmetric. 

The hysteresis ARel = Re:" - Re:" is very small at Re2 = 0. This fact seems 
to be responsible for the contention by experimentalists that the bifurcation to the 
Taylor vortex flow is supercritical if the layer is thin (Yavorskaya et al. 1980). More 
precise experiments (Yu. N. Belyaev 1994, private communication) detected hysteresis 
ARel = 0.7 f 0.25 in the flow with 6 = 0.1096 and Re2 = 0. This value is consistent 
with the value ARel = 1.3 obtained in our calculations. Agreement with the results 
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FIGURE 8. Hysteresis A R q  = Re:” -Re{” of transitions between the basic flow and the flow with 
one pair of Taylor vortices as a function of Re2. 

of Schrauf (1986) can also be seen. He calculated ARel = 1.3 in the case of 6 = 0.115 
and Re2 = 0. 

Calculations of the transitions between regimes 0 and I conducted with 0 < Re2 < 
2500 disclose that the hysteresis depends strongly on Re2. It can be seen in figure 8 
that its magnitude increases with Re2 up to ARel = 67 at Re2 = 2500. 

By imposing axial and reflection symmetry the branch of basic flow solutions can 
be extended into the supercritical region Re1 > 1262.5 until the linear mode with 
both symmetries begins to grow. The extension reveals the phenomenon previously 
described by Marcus & Tuckerman (1987) in the flow with 6 = 0.18 and Re2 = 0. 
Linearly unstable (relative to anti-reflection-symmetric modes with m = 0 and m = 1) 
regime 0 transforms smoothly into unstable (in the same manner) regime 11. At 
Re1 = 1305f(O.5) an additional small recirculation vortex appears in each hemisphere 
at the stagnation point of the pinched meridional basic flow. The intensity and the 
size of the vortex pair grow with Rel. The linear stability analysis reveals that 
at Rel = 1354.8, regime TI becomes stable. The eigenvalue of the most unstable 
eigenmode becomes negative, with the eigenmode being axisymmetric and anti- 
reflection-symmetric. At this point, which is clearly the point of an equatorial 
symmetry-breaking pitchfork bifurcation, decrease in Rel produces a transition I1 + I. 
A similar transition was described by Marcus & Tuckerman (1987). 

The main innovation of our numerical investigations is the simulation of the three- 
dimensional non-steady secondary flows observed in the experiments. The flow with 
spiral vortices (regime S1 described in $4.2 j was obtained at Re2 = 0 in the following 
way. The flow was sequentially calculated at several points (Rel, ReI), with the first 
point being at Re2 = 2050 and the last one at Re2 = 0. At each step the regime 
S1 obtained at the preceding point was used as an initial condition. Numerical 
simulation performed with Re2 = 0 and varying Re1 has shown that the S1 flow exists 
for Re1 > 1306 i (1). Decreasing Re, through this lower boundary of the existence 
region leads to a transition S1 -, I. 

The angular velocity of regime S1 is shown in figure 9 as a function of Rel. One can 
see (in comparison with the wave speed calculated at Re2 = 2050) that the velocity 
depends strongly on Re2, rather than on Rel. 

Another comparison that can be made is between the wave speeds of the nonlinear 
secondary regime S1 and of unstable travelling wave linear modes. As discussed above, 
an unstable basic flow solution (or regime I1 when Re1 > 1305) can be calculated at 
Re1 > Relc. When 1268.6 = Relc + 6.1 < Re1 < 1332.2 = Relc + 69.8, the solution is 
unstable not only to an axisymmetric anti-reflection-symmetric linear mode, but also 
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FIGURE 9. __ , Wave speed of secondary flows with spiral vortices (regime S1 at Re2 = 0 and 
2050 and Sz at Re2 = -1200) as a function of Rel - Rel,, where Relc is the critical number for the 
first instability of the basic flow, i.e. for transitions to regimes S1, Sz at Re2 = 2050, -1200 and to 
regime I at Rez = 0; *, wave speed of the most unstable travelling wave linear mode at the same 
parameter values. 

to an anti-reflection-symmetric mode m = 1. It can be seen in figure 9 that the wave 
speed of this mode matches closely the wave speed of regime S1. 

Another experimentally observed three-dimensional phenomenon is that increase of 
Re1 gives rise to sinusoidal travelling waves on the Taylor vortices of regimes I and 11. 
Our numerical investigation of these transitions was restricted to the linear stability 
analysis. Regimes I and I1 become unstable at Re1 = 1358.5 and Re1 = 1497.1 
respectively. The preferred modes are travelling waves which are anti-reflection- 
symmetric and have wavenumbers m = 3 (for regime I) and m = 5 (for regime 11). In 
both cases a further increase of Rel causes the steady flow to become unstable to a 
wide band of travelling wave linear modes, which includes anti-reflection-symmetric 
as well as reflection-symmetric ones. The waves propagate in the sense of rotation 
of the inner sphere. The wave speed of the most unstable mode at the stability 
limit is W = 0.458 for regime I and W = 0.442 for regime 11. A comparison with 
the experimental results concerning the wavy Taylor-vortex flow between rotating 
spheres can be made. The critical Reynolds numbers are compared in Appendix 
B. Nakabayashi & Tsuchida (1988b) measured the wave speed in the flow with two 
pairs of wavy Taylor vortices at 6 = 0.138 and Re2 = 0. They found that at the lower 
boundary of existence of this regime, W = 0.48 and m = 5. 

4.2. Co-rotating spheres; Re? > 181 1 
The experiments by Yavorskaya et al. (1977, 1980), and Yavorskaya & Belyaev 
(1986) disclosed that at Re2 > 1940 the first instability of the basic flow results in a 
travelling azimuthal wave flow with equatorially asymmetric spiral vortices located 
near the equator. Fast acceleration of the inner sphere from a subcritical value of Re1 
up to a slightly supercritical one was found to give rise to another transition to the 
flow with one pair of Taylor vortices. The existence regions of the flows with spiral and 
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FIGURE 11. The flow with spiral vortices (regime Sl) at Re2 = 2050, Re, = 2513 = Rel,(Rez) + 20.1. 
Vortex boundaries defined as curves u = 0 at the spherical section r = 1 + 66/11. The section is 
mapped into a (cp, @)-rectangle and only the part near the equator is plotted. 

Taylor vortices overlap in large measure. The backwards transitions from either of 
these flows to the basic flow occur at the same (within the accuracy of measurements) 
subcritical value of Re,. At higher Re, the non-uniqueness of secondary regimes is 
further enhanced by the appearance of the flow with two pairs of Taylor vortices near 
the equator. The transition from the basic flow to this secondary flow was produced 
in the experiments by fast acceleration of the inner sphere. 

The bifurcation diagram constructed at Re2 = 2050 and shown in figure 10 explains 
the laboratory observations. 

When Re1 = Rel,. = 2492.9, the basic flow becomes unstable to an m = 4 travelling 
wave mode, which is anti-reflection-symmetric. The primary bifurcation of the basic 
flow breaks the rotational and equatorial symmetry. The transition 0 -+ S1 to the 
three-dimensional travelling wave secondary flow with spiral vortices was produced 
by starting with the basic flow equilibrium at Re1 = Rqc and then suddenly increasing 
Rel to the value Rel = 2495 at which travelling wave anti-reflection-symmetric linear 
modes with 2 < m < 5 are unstable. With the goal of reducing the computational 
time a finite perturbation consisting of a superposition of growing linear modes was 
added to the basic flow solution. The total energy of the initial perturbation was 
one-hundredth that of the basic flow. 

The spatial structure of the computed secondary flow is shown in figures 11 and 12. 
Inflow and outflow curves (spiral vortex boundaries) are plotted in figure 11. More 
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FIGURE 12. (T-, @)-projections of the velocity field of the flow in figure 11 plotted in the meridional 
sections crossed at cp = 0.871, 0.9571, 1 . 2 ~  (a--c). 

comprehensive information can be found in figure 12 where the meridional velocity 
fields in sections at different values of cp are shown. It can be seen that in a major 
range of the azimuthal angle the flow resembles the axisymmetric regime I (figure 12a). 
Two approximately equal vortices are located near the equator. The vortices have 
a meridional size that is slightly less than the gap width. A meridional circulation 
corresponding to the pinched basic flow is retained at higher and lower latitude. 
There is an inflow boundary between the vortices which lies near the equator and two 
outflow boundaries between the vortex pair and the regions of basic circulation. All 
the boundaries are almost straight streamlines extending from the inner to the outer 
sphere. A distinction between the regimes I and S1 is due to the form of the spiral 
vortex flow near the point that is approximately cp = TC in figure 11. The vortices open 
up, their axes deviating toward the poles and their tails being eroded by the basic 
flow at higher and lower latitude. It is this part of the flow that is ‘responsible’ for 
the equatorial asymmetry of the flow (figure 12c). One can see in figures 11 and 12 
(h)  that there is a range of cp where the regions of basic circulation reach the equator, 
and the flow resembles the pinched basic flow with only one outflow boundary near 
the equator. 

The whole pattern rotates in the direction of the inner-sphere rotation. The angular 
velocity W ,  which is plotted in figure 9, depends only slightly on Rel.  As discussed 
below, the basic flow solution can be calculated in the region Rel > R q L .  A linear 
stability analysis reveals that at slightly supercritical Re1 the basic flow becomes 
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FIGURE 13. Azimuthal decomposition (2.17) of the total energy of reflection-symmetric (ln(Ei) 
denoted as *) and anti-reflection-symmetric (ln(Ek) denoted as x ) parts of the flow in figure 11. 
The energy corresponding to the Stokes term wSt  is subtracted from Ri. 

unstable to a wide band of travelling waves which have equal (to the third decimal 
place) wave speed. One can see in figure 9 that this wave speed is very nearly equal 
to that of the secondary nonlinear regime S,.  

We can state with assurance that the flow obtained is a numerical reproduction 
of the experimentally detected flow with spiral vortices. (A photograph from the 
experiments can be found in Yavorskaya et al. 1980; Yavorskaya & Belyaev 1986.) 
In particular, as in the experiments, the flow appears to have the main azimuthal 
wavenumber m = 1. This can also be seen in figure 13, where the distribution of the 
total energy of the flow over the reflection-symmetric and anti-reflection-symmetric 
components with different m is shown. On the other hand, the most unstable linear 
mode at the stability limit Re1 = RelL has m = 4. An explanation of this change of 
the azimuthal periodicity can be given which is based on the following results of the 
calculations. Firstly, many more linear modes become unstable at Reynolds numbers 
just higher than Rel,. As an example, modes m = 3,5, and 2 have zero growth rate 
at Relc + 0.1, Relc + 1.1, and Relc + 1.4, respectively. Therefore the transition 0 + Sl 
simulated with Relc + 2.1 cannot be considered as produced under a quasi-static 
increase of Rel. Secondly, as discussed below, the transition is subcritical. We may 
suppose that the azimuthal periodicity of regime S1 points to the presence of several 
bifurcation points crossed by the solution on its way to the final equilibrium. 

By imposing axial symmetry of the flow on our numerical code, the branch of 
basic flow solutions can be extended into the supercritical region Re1 > Re,,. At 
Re, = 2497 = Relc + 4.1, an axisymmetric, anti-reflection-symmetric linear mode 
is added to the set of unstable modes. When restricting ourselves to axisymmetric 
solutions and increasing Rel quasi-statically, we are in a position to obtain at this 
point the transition 0 + I which is similar to that calculated with Re2 = 0 and 
described in $4.1. One can see in figure 10 that regimes I and Sl coexist over a wide 
range of Rel, with the curve z2(Rel) for regime I lying slightly higher than that for 
regime S1. Curiously, it was found that starting from an unstable basic equilibrium 
at Re1 belonging to the coexistence region of regimes I and Sl, our numerical code 
released from the axisymmetry constraint produces the transition 0 + S1 only if 
a particular finite three-dimensional perturbation is added ; otherwise the transition 
0 + I occurs. 

Regimes I and Sl can be obtained in the subcritical region Re1 < Relc by quasi- 
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FIGURE 14. Bifurcation diagram at Re2 = -1200 (plotted as in figure 7). Sz denotes the flow with 

rotating spiral vortices shown in figures 15 and 16. 

static decrease of Rel. The backwards transitions S1 + 0 and I + 0 occur at the close 
Reynolds numbers Re, = 2473.8 for I -+ 0 and 2473 < Re1 < 2474.5 for S1 + 0. 

An extension of the branch of basic equilibria to values of Re1 higher than the 
critical value for transition 0 + I is possible provided reflection symmetry of the flow 
is imposed. At Rel = 2592 & (0.5), a smooth transformation of regime 0 to regime 
I1 occurs, which is similar to the transformation at Re2 = 0 described above. At 
Rel = 2681.1, regime I1 becomes stable. The transition I1 -+ I is produced at this 
point by quasi-static decrease of Rel. 

During the calculations the branches of regimes I and I1 were extended up to 
Rel = 2900. The linear stability analysis has shown that the regimes are stable in 
this region. This does not preclude the existence of travelling wave instability of 
these regimes, which is similar to that detected at Re2 = 0 (see $4.1) and corresponds 
to the appearance of sinusoidal waves on Taylor vortices, at greater values of Re,. 
Unfortunately, there is no experimental information about the presence or absence of 
secondary regimes with wavy Taylor vortices at large positive Re2. 

4.3. Counter-rotating spheres; Re2 < -646 
Some experimental observations of the secondary regimes in this region are available. 
It was discovered by Yavorskaya et al. (1977, 80) and Yavorskaya & Belyaev (1986) 
that at Re2 < -920 the first instability of the basic flow results in transition into 
the travelling wave flow with spiral vortices near the equator. The spirals differ in 
appearance from those of regime S1. 

The linear stability analysis of the basic flow revealed that at Re2 < -646 the 
first instability is associated with reflection-symmetric travelling waves. Therefore, 
we can add a third type of primary symmetry-breaking bifurcation to the set of 
those described above. This bifurcation breaks the rotational symmetry and keeps 
the equatorial symmetry unbroken. 

The nonlinear simulation was performed only with Re2 = -1200. The resulting 
bifurcation diagram is shown in figure 14. At Rel = 1597.3 the basic flow becomes 
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FIGURE 15. The flow with spiral vortices (regime Sz) at Re2 = - 1200, Re1 = 1630 = Rel,(Rez) + 32.7. 
Vortex boundaries (plotted as in figure 11) at the sections r = 1 + 6/4, 1 + 6/2, 1 + 36/4 (a-c) 
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FIGURE 17. Azimuthal decomposition of the total energy of the flow in figure 15. Only 
reflection-symmetric terms with even m (ln(E;) denoted as *) are non-zero. 

unstable to a linear mode with wavenumber m = 2. The transition to a spiral 
vortex flow can be produced at the stability limit in a way which is similar to that 
described in 54.2 for the transition 0 -, S1, that is, by suddenly increasing Re1 to the 
supercritical value Rel = 1601 and adding a three-dimensional finite perturbation. 
The perturbation is the superposition of the preferred mode m = 2 and the reflection- 
symmetric travelling wave mode in = 1 which becomes unstable at Rel = 1599.4. 

Hereafter the resulting flow will be referred to as regime S 2 .  Its spatial structure is 
shown in figures 15 and 16. It can be seen that, unlike regime S1, vortices do not fill 
the whole gap width (compare figure 16 with 12). There is a clearance between them 
and the outer sphere. The flow pattern depends strongly on r. Furthermore, there 
are ranges of cp in which the flow resembles the axisymmetric regime 11, that is, two 
vortices with an outflow boundary between them are located at the equator and are 
separated from the basic meridional flow by smaller vortices having the opposite sign 
of circulation (figure 16a). 

Other distinctions between regimes S2 and S1 are that regime S2 has the main 
azimuthal wavenumber m = 2 and is reflection-symmetric. The decomposition of 
the flow energy is shown in figure 17. It can be seen that in accordance with the 
type of equatorial symmetry and the azimuthal periodicity of the linear mode which 
first becomes unstable only the reflection-symmetric terms with even wavenumber are 
non-zero. 

The wave-speed of regme S 2 ,  which is depicted in figure 9, is substantially less 
than that of regime SI at Re2 = 0 or Re2 = 2050. The results of the linear stability 
analysis, namely the wave speeds of the preferred mode m = 2 at Re2 = -1200, are 
also shown in figure 9. One can see that the speeds of nonlinear and linear solutions 
are very close. This is not the case when the other unstable mode m = 1 is taken for 
comparison. The wave speed of this mode, which is about 0.19, differs significantly 
from those of regime S 2  and mode m = 2. 

An essential property of the instability is that the bifurcation appears to be 
supercritical. The Reynolds number for transition 0 -+ S2 was defined by the linear 
stability analysis as Re1 = 1597.3. The maximum value of Rel at which the backwards 
transition S 2  --+ 0 was produced by our nonlinear code is Re1 = 1597. 

An unstable basic flow solution can be extended into the supercritical region 
by imposing axisymmetry. With this constraint, the flow breaks into axisymmetric 
oscillations at Re1 = 1609 & (2). The oscillations change the spatial structure of the 
flow from that of the basic flow to that of regime I1 and back during the period, with 
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FIGURE 18. Summary plot of the calculated secondary regimes of the flow. Re1 - Relr is plotted 
on the vertical axis instead of Re,, where Rel,(Re2) is the critical number for the first instability 
of the basic flow determined by the linear stability analysis. Therefore, the zero-ordinate line 
corresponds to the stability curve and separates subcritical and supercritical regions. - - - -, 
. . . . . . - . - . - , three different parts of the linear stability curve corresponding to the three 
different types of primary bifurcation; A and &, points at which spiral vortex regime S1 was 
calculated and the lower boundary of its existence region at Re2 = 0, 2050; V and a, points 
at Re2 = -1200 at which spiral vortex regime S2 was calculated and the lower boundary of its 
existence region; -, the lower boundary of existence region of regime I ;  +,-the lower 
boundary of existence region of regime 11 calculated at Re2 = 0, 2050; * and x, limits of the wave 
instability of regimes I and TI calculated at Re2 = 0. 

reflection and rotational symmetries remaining unchanged. This flow is unstable to 
three-dimensional disturbances and undergoes a transition to regime 52 after being 
released from the artificial condition of axisymmetry. It is to be noted that a similar 
axisymmetric oscillating flow was found to be stable in wider layers (see Astaf'eva 
1985a for the case d = 0.24). 

5 .  Concluding remarks 
In this paper we have investigated the various regimes of spherical Couette flow 

and transitions among them. The case of a small gap size and both boundary spheres 
rotating has been considered. Four secondary flows were involved in the calculations: 
the steady axisymmetric flows with one and two pairs of Taylor vortices and two 
different three-dimensional flows with rotating spiral vortices near the equator. This 
study is believed to be the first to simulate the spiral vortex flows arising in thin 
layers when both boundary spheres rotate. The numerical results provide a detailed 
description of observed three-dimensional flows and the pattern of transitions among 
various regimes. They also explain many of the experimental observations, among 
them that some transitions occur only when the inner sphere is accelerated or 
decelerated quickly, whereas others occur when the acceleration or deceleration is 
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slow. One can see in the calculated bifurcation diagrams displayed in figures 7, 10, 
and 14 that the transitions which can be assigned to the first group are 0 + 11, II+ 0, 
0 + I at Re2 = 2050 and 0 + 11, I1 + 0 at Re2 = 0, and the transitions belonging 
to the second group are 0 + S1, S1 -+ 0, I + 0, I1 + I at Re2 = 2050, 0 + I, I + 0, 
S1 + I, I1 -, I at Re2 = 0 and 0 + S2, S2 + 0 at Re2 = -1200. 

The results of the calculations are summarized in figure 18. It can be seen that 
the study can be continued, in particular, to obtain the complete boundaries of the 
existence regions of the secondary regimes S1, S2, I, and 11. Another possible subject 
to investigate is the influence of the gap size 6 on the bifurcations. 

The principal conclusion which can be drawn from the results presented in this 
paper is the following. The parameter range under consideration (6 = 0.11, -1200 < 
Re2 < 2500) can be divided into three parts depending on the type of primary 
symmetry-breaking bifurcation. At -646 < Re2 < 1811 the bifurcation is a subcrit- 
ical pitchfork breaking equatorial symmetry, leading to an equatorially asymmetric 
transition to the steady axisymmetric but also reflection-symmetric flow with one 
pair of Taylor vortices. At Re2 < -646 and Re2 > 1811 the bifurcation breaks the 
rotational symmetry and causes azimuthally travelling wave secondary flows with 
spiral vortices to appear at the stability limit. The difference between the last two 
regions is that in the first the equatorial symmetry is preserved and the travelling 
wave solution branches off supercritically, whereas in the second the bifurcation is 
subcritical and breaks not only rotational but also equatorial symmetry, resulting in 
an equatorially asymmetric secondary solution. 

We believe that the semi-spectral numerical technique employed here has demon- 
strated its capability for reproduction of the three-dimensional flows of viscous 
incompressible fluid in a spherical annulus. Up to now, there has been only one 
study carried out by Dumas (1994) that investigated numerically the experimentally 
detected phenomenon of three-dimensional instability in thick layers with 6 2 0.33. 
It seems plausible that these interesting investigations can be pursued with the use of 
the technique outlined above. It is also possible that our numerical method can be 
applied to the fascinating problem of convection in a spherical layer. 

The investigations were began on the initiative of I. M. Yavorskaya. Her help 
cannot be overestimated. The author thanks N. M. Astaf'eva, Yu. N. Belyaev and N. 
D. Vvedenskaya for many useful discussions. He is very grateful to the referees for 
careful reviews of the paper and constructive comments. This work was supported 
in parts by the Russian Fund for fundamental research (grants 93-013-2896 and 93- 
013-17342), the International Science Foundation (grant J2P100), and the Alexander 
von Humboldt Foundation. 

Appendix A 

in terms of the following products of spherical harmonics: 
We demonstrate below that the nonlinear right-hand sides of (2.10) can be given 

G, = Y17' YIF,  
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Sums of a similar nature were written by Young (1974) for the equations describing 
thermal convection in a spherical shell. Each of (Al)-(A3) can be expanded in a finite 
series of spherical harmonics and, thus, the right-hand sides of (2.10) are expandable 
in a like manner. For brevity, the subscript i (i = 1,2) will identify the coefficient with 
the subscripts &,mi. For example, TI will denote Tllml. In addition, we shall use the 
following designations: b, = l i ( &  + l), D, = D18 = + l ) r 2  - a2/dr2. We obtain 

where L2 is the 8-q~ part of the Laplacian 

Appendix B 
The intention of this section is to check our calculations for accuracy by comparing 

the results with the known experimental data. Also discussed is the effect of values 
of discretization parameters K , M ,  L, and time step At on the accuracy. Out of 
the extensive experimental results obtained by the group of Yavorskaya and Belyaev 
(Yavorskaya et ul. 1977, 1980; Yavorskaya & Belyaev 1986) for the layer with gap 
size 6 = 0.1096 we choose for comparison those for the specific case of fixed outer 
sphere (Re2 = 0), since the transitions among secondary regimes have been well 
understood and documented in this case. For the most part, the experimental results 
are represented graphically in the papers. The exact values of Taylor vortex sizes and 
critical Reynolds numbers for transitions, which are used below, were communicated 
privately by Yu. N. Belyaev (1994). 

The major portion of our numerical simulation was performed with the following 
discretization parameters: K = 10, A4 = 6 (0 when calculating axisymmetric flows), 
and L = 60, where K ,  M ,  and L are respectively the number of radial discretization 
points and test functions in the azimuthal and polar directions. In the region of large 
negative Re2, intense counter-rotation of the boundary spheres results in a strong 
radial gradient of the velocity field. Therefore, it was necessary at Re2 < -646 to 
raise the radial discretization parameter K up to 15. The control calculations of 
axisymmetric flows carried out with K = 15, 20, 25 at Re2 = 0 and 2050 and with 
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K 10 15 20 2s 
0 --f I 1262.5 1255.1 1254.9 1254.9 
1 -+ 0 1261.2 1253.9 1253.8 1253.8 

TABLE 1. The influence of K (the number of radial discretization points) on the critical numbers 
for transitions 0 + I and I + 0. Calculations are carried out with Re2 = 0 and L = 60. 

K = 20, 25 at Re2 = -1200 produced results (the sequence of transitions, the critical 
Reynolds numbers for them, torques on the boundary spheres, etc.) which differ little 
from those with K = 10 and K = 15. An example of such a test can be seen in 
Table 1, where the critical Reynolds numbers for transitions 0 + I  and I -+ 0 are 
compared. The calculations are made with L = 60. 

The accuracy of our simulation of the three-dimensional flows was not tested by 
calculations with azimuthal truncation parameter M greater than 6. This can be 
justified to some extent by the good accord between calculations and experiments in 
the spatial structure of three-dimensional regimes and in the regions of their existence. 

It must be stressed that the number L of Legendre functions in the expansions 
of unknown functions has a dramatic effect on the accuracy. Calculations with 
poor polar resolution give a wrong sequence of bifurcations and miss the secondary 
regimes detected in the experiments. For example, when using the numerical code 
with L = 20, K = 10, and M = 0 at Re2 = 0, we were in a position to extend 
the branch of a basic equilibrium without any transition up to Re1 = 1500, that is, 
into the supercritical region where the axisymmetric secondary regimes with one and 
two pairs of Taylor vortices exist. A simple qualitative analysis can be made. The 
characteristic polar scale of secondary flows with Taylor and spiral vortices and of a 
basic flow with pinches (the latitudinal extent of a Taylor or spiral vortex or a pinch) 
is slightly less than the gap width. Setting the angular size of a vortex at A0 = 0.86 
(see figure 19), the number of associated Legendre polynomial E = n/AO = 36. It is 
evident that a simulation with this or smaller values of L cannot be plausible. Our 
calculations with different values of L have shown that L = 60 is the minimum value 
that provides valid results. The comparison of these results as well as of the results 
obtained with L = 90 with experimental data can be seen in table 2 and figure 19. 
The control calculations for axisymmetric regimes with L = 110 are not involved as 
they provide practically the same results as the calculations with L = 90. 

The critical Reynolds numbers for transitions among different regimes and the size 
of Taylor vortices in regime I are chosen to compare our results with experimental 
ones. All measurements are made at Re2 = 0. The critical Reynolds numbers for 
the transitions are shown in table 2. Six types of transitions are included: (i) the 
transition from the basic flow to the flow with one pair of Taylor vortices denoted 
as 0 + I, (ii) the reverse transition I + 0, (iii, iv) the transitions S1 -+ I and I1 + I, 
which correspond to the lower boundaries of existence regions of regimes S1 and 11, 
(v, vi) the transitions from regimes I and I1 to the flows with wavy vortices (these are 
determined numerically by the linear stability analysis). 

There is good agreement (within 5 YO) between the calculated and experimentally 
detected critical Reynolds numbers. It is to be noted that the Reynolds numbers were 
measured in the experiments accurate to f12. 

One can see that our critical Reynolds numbers are about 4% higher than the 
experimental ones. The reason for such a regular discrepancy is unlikely to be 
the difference in gap size between the experiments (6 = 0.1096) and calculations 
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8 
A '  ' _______-------- * 

A 

0.5 

Transition 

1 

O + I  
I + O  
s1 + I  
I1 -+ I 

Wave instability 
of regime I 

Wave instability 
of regime I1 

Experiments Calculations 
with L = 60 

Re1 ARel Re1 ARel 
1225 1262.5 

1270 45 1306.0 43.5 
1315 90 1365.2 102.7 

1225 1261.2 -1.3 

1300 75 1358.9 96.4 

1430 205 1489.5 227.0 

Calculations 
with L = 90 
Re1 ARel 

1262.2 
1261.1 -1.1 

1354.9 92.7 

1358.5 96.3 

1495.2 233.0 

TABLE 2. The influence of L (the number of test functions in the polar direction) on the critical 
numbers for transitions among different regimes at Re2 = 0. ARel = Re1 - Relcr where Relc is the 
critical number (obtained in the experiments or calculated with L = 60 or L = 90) for the first 
instability of the basic flow, that is, for transition 0 -+ I. 

- ( - - -  
1262.2 (1262.5) 

-1, 
for 

(6 = 0.11). It was shown by Yavorskaya et al. (1980) that in the case of a thin layer, 
the critical Reynolds number for transition 0 4 I at Re1 = 0 can be approximately 
defined as a function of 6 by the formula Re1,(6) = 41.3(1 + ~ 6 ) 6 - ~ ' ~ ,  where c = 1. 
Setting c = 1, we obtain Relc(0.1096) = 1263 and Rel,(O.ll) = 1257, i.e. the 
discrepancy is considerably below than that shown in table 2 and has the opposite sign. 
A more probable reason is the inevitable geometric imperfection of the experimental 
spherical gap. As was shown numerically by Bar-Yoseph et al. (1990), the presence 
of a small eccentricity slightly decreases Rel,,. Furthermore, a misalignment of the 
axes of inner and outer boundary spheres may introduce a systematic error into 
the experimental measurement of the Reynolds number. In attempt to eliminate 
this unknown reason we compare the differences Re1 - Rel,, where Relc are the 
corresponding (experimental or calculated with L = 60 or L = 90) critical numbers 
for the first instability of the basic flow, i.e. for the transition 0 -+ I. It can be seen 

FIGURE 19. Size of vortex in regime I at Re2 = 0 as a function of Rel - Relc. ~ (- - - -), 
calculations with L = 90 ( L  = 60); A, experimental data. The value of Relr is 1262.2 (1262.5) for 
calculations with L = 90 ( L  = 60) and 1225 for the experiments. 
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At Eigenvalue at Re1 = 2512 Relc Wave speed at Re1 = Relc 
n/50 -5.32 x low3 - i3.277 2518.2 0.819 
n/100 -4.14 x lo-’ - i3.280 2516.5 0.820 
n/200 -3.97 x low3 - i3.280 2516.4 0.820 
n/400 -3.95 x lo-’ - i3.280 2516.4 0.820 

TABLE 3. The influence of time step At on the solution of linear stability problem. The stability of 
the basic flow to the preferred mode m = 4 is calculated with Re2 = 2075, L = 60, K = 10. 

in table 2 that the agreement between these differences is better than between the 
critical Reynolds numbers themselves. 

The numerically and experimentally detected sizes of Taylor vortices in regime I 
are shown in figure 19 as functions of Re1 - Rel,. The case of a fixed outer sphere 
is considered. The vortex size is defined as the distance between the equator and the 
outflow boundary of the vortex. To facilitate comparison with visual experimental 
observations (necessarily made from the exterior), this outflow location is determined 
at the radial discretization point nearest to (but not at) the outer sphere. 

The last numerical parameter whose influence on the accuracy should be discussed 
is the time step At. Test calculations with At = 71/50, n/lOO, 71/200, and n/400 have 
shown that the maximum value At = n/50 can be used for the nonlinear simulation. 
A decrease of At causes a slight change of the time of transition between two regimes, 
with the consequence of transitional states and a final state remaining unchanged. 
The influence of At on the solution of the linear stability problem is illustrated in 
table 3 by the example of anti-reflection-symmetric mode m = 4. It can be seen that 
the calculations with At = 71/50 give an error in the eigenvalue and thus in the critical 
Reynolds number and wave speed. Therefore, the linear stability problem was solved 
with At = n/100 and, in specific cases, with At = 71/200. 
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